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Abstract: The paper proposes a new estimating algorithm for linear parameter varying systems
with slowly time-varying parameters when the rate of change of individual parameters is
different. It introduces a true probability density function, describing ideally the behaviour
of parameters. However, as it is unknown, we search for its best approximation. A convex
combination of point estimates, defined by individual hypotheses about the true probability
density function, is then approximated by a single density. That serves as the best available
description of parameters’ behaviour and it is therefore suitable e.g. for prediction purposes.
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1. INTRODUCTION

Tracking of slowly varying parameters is an important task
in the theory of adaptive systems. Majority of prediction
and control algorithms, employing regression models like
autoregression model (AR), autoregression model with ex-
ogenous inputs (ARX), autoregression model with moving
average (ARMA) etc., assume a carefully defined model
structure and correctly estimated parameters. Problems
arise, when the model parameters vary in time. The prob-
lems of slowly time-varying model parameters were given
a thorough attention. The exponential forgetting method,
motivated by the idea of flattening the posterior proba-
bility density function [Peterka, 1981] or by time-weighted
least squares (LS) [Jazwinski, 1970] dominates the group of
solutions. Various modifications of this method were devel-
oped to solve the problem of information loss, when non-
informative data are coming, e.g. the controlled forgetting,
directional forgetting etc. (Kulhavý and Kárný [1984] and
Cao and Schwartz [2000]). Other techniques employ the
state-space model to describe the parameter changes. A
typical example is the Kalman filter, estimating the pa-
rameters of a linear model with normal noise (see Kalman
and Bucy [1961] and Kalman [1960]) and its modification
like H∞ filter, extended Kalman filters or particle filtering
[Simon, 2006].

Many improvements of the exponential forgetting method
solved its common drawback, but in contrast to the state-
space based models, they lack the ability to appropriately
track multiple parameters which vary each with different
rates. This paper proposes a partial forgetting method,
allowing to track the parameters even in this case.

The proposed forgetting technique employs some impor-
tant facts from the field of the Bayesian modelling, sum-
marized in Kárný et al. [2005]. As far as the authors are
aware, the proposed concept is completely new.

The specific notation: ′ denotes transposition, ≡ is equiv-
alence by definition, ∝ is proportionality, i.e. equivalence
up to a constant factor. θ∗ denotes a set of θ-values, f(x)
is probability density function where the random variable
is determined by its argument x. The time is discrete,
starting from 0.

2. PROBLEM STATEMENT

2.1 System model

Consider a discrete stochastic system observed at time
instants t = 1, 2, . . . Let this system have directly ma-
nipulated input ut, which affects the single system out-
put yt. The couples of inputs and outputs in each time
instant t form the data vector dt = (ut, yt); the sequence
d(t) = (d1, d2, . . . , dt) describes the evolution of the system
behaviour in time, i.e. from the beginning time instant 1
until the estimation time t.

Generally, the model output yt depends on the previous
data d(t − 1) and the current input ut. This dependence
is modelled by a conditional probability density function
(pdf), which has the form

f(yt|ut, d(t− 1), θt) = f(yt|ψt, θt) (1)
where θt stands for a model parameter (possibly multivari-
ate column vector) and ψt is a column regression vector
containing all data that have an influence to the output
yt.

2.2 Parameter estimation

According to the Bayesian approach, the unknown model
parameter θ is a random variable. Then, it is possible to
describe it by a probability density function, conditioned
by the data available at the current time instant t, i.e.
f(θ|d(t)). If we apply the natural conditions of control
[Peterka, 1981] saying

f(θt|ut, d(t− 1)) = f(θ|d(t− 1)) (2)
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then the Bayes rule for recurrent parameter estimation
reads

f(θt|d(t)) ∝ f(yt|ψt, θt)f(θt|d(t− 1)) (3)

This relation can be viewed as the data update, as the new
information carried by the data is incorporated into the
parameter estimate.

The successive step after the data update is the time
update, formally given

f(θt+1|d(t)) =
∫
θ∗
f(θt+1|d(t), θt)f(θt|d(t)) dθ (4)

In the case of time-invariant parameters θt+1 = θt, the
time update is rather a formal step. However, a mathemat-
ical model with a fixed structure and constant parameters
is not always suitable for modelling the reality and it is
often necessary to admit that its parameters vary. There is
a couple of methods how to obtain the posterior pdf in (4),
one of them is to consider an explicit model of parameter
changes on the right-hand side. Unfortunately such model
is not always available. Another approach is to modify
the whole time-update to make it admit slow permanent
changes of parameter estimates. Such an approach is called
time weighting, time discounting or simply forgetting.
Remark 1. In this paper, the case of slowly varying pa-
rameters is considered, which can be formally written as
θt ≈ θt−1. In regard to this proximity, we don’t write the
parameters with time index anymore.

The summary of estimation of slowly varying parameters
with forgetting:

(1) Collect the newest data dt.
(2) Perform the data update of the parameter probability

density function (3).
(3) Perform the time update (4) in the form of forgetting

The main problem of the majority of forgetting methods
consists in the fact, that all parameters are forgotten with
the same rate.

3. PARTIAL FORGETTING

The basic idea of partial forgetting, allowing tracking of
individual parameters, is based on the notion of unknown
true parameter probability density function Tf(θ|d(t)).
This pdf describes ideally the actual behaviour of the
model parameters. Our aim is to find its best approxima-
tion over all formulated hypotheses about the variability
of individual parameter elements. The hypotheses specify
whether and which configuration of parameters changes.
Each hypothesis has its own probability with which it is
supposed to be valid and induces a probability density
function, which should be used on condition of the hy-
pothesis validity. Division of the reality into several specific
cases, according to the specified hypotheses, leads to the
description of the true pdf in the form of a mixture of den-
sities. The goal is to find the best approximation f̃ of this
mixture, regardless on the knowledge which hypothesis is
true at the moment.

This approximate pdf is constructed so that it would
minimize expectation of a distance between the mixture
and itself. As the distance (or more correctly divergence)

measure, we use the Kullback-Leibler divergence [Kullback
and Leibler, 1951] in the form

D (f(x)||g(x)) =
∫
f(x) ln

f(x)
g(x)

dx, x ∈ x∗ (5)

It measures the divergence of a pair of pdfs f and g, acting
on a set x∗. However, it cannot be considered as a distance
measure, since it does not satisfy neither the symmetry
D (f ||g) 6= D (g||f), nor the triangle inequality.

3.1 Hypotheses

As it has been mentioned, the method of partial forgetting
is based on an unknown random true multivariate param-
eter pdf Tf(θ|d(t)) = Tf(θ1, . . . , θn|d(t)), n = 1, 2, . . .. The
problem is, that such a pdf is not available to us, as we
are not sure about the variability of individual parameters.
Theoretically, it would be possible to consider a hyper-
distribution describing the pdf Tf , however, it is too com-
plicated and we will drop the idea. For our purposes, it is
fully sufficient to take into account its point estimates con-
structed on the basis of the individual hypotheses about
the parameters behaviour. These hypotheses are given by
the expectations as follows:

H0 : E
[
Tf(θ|d(t))|θ, d(t), H0

]
= f(θ|d(t))

H1 : E
[
Tf(θ|d(t))|θ, d(t), H1

]
=

= f(θ2, . . . , θn|θ1, d(t))fA(θ1)
H2 : E

[
Tf(θ|d(t))|θ, d(t), H2

]
=

= f(θ1, θ3, . . . , θn|θ2, d(t))fA(θ2)
. . .

Hn : E
[
Tf(θ|d(t))|θ, d(t), Hn

]
=

= f(θ1, . . . , θn−1|θn, d(t))fA(θn)
Hn+1 : E

[
Tf(θ|d(t))|θ, d(t), Hn+1

]
=

= f(θ3, . . . , θn|θ1, θ2, d(t))fA(θ1, θ2)
Hn+2 : E

[
Tf(θ|d(t))|θ, d(t), Hn+2

]
=

= f(θ2, θ4 . . . , θn|θ1, θ3, d(t))fA(θ1, θ3)
. . .

H2n−2 : E
[
Tf(θ|d(t))|θ, d(t), H2n−2

]
=

= f(θn|θ1, . . . , θn−1, d(t))fA(θ1, . . . , θn−1)
H2n−1 : E

[
Tf(θ|d(t))|d(t), H2n−1

]
= fA(θ) (6)

The verbal expression of the given hypotheses is the follow-
ing: H0 assumes that no parameter varies, hence the data-
updated pdf is used in (3) directly as the time updated one.
The hypotheses H1, . . . ,Hn represent cases when only one
parameter varies, thus its marginal pdf is replaced with
a suitable alternative. The following hypotheses present
cases when a specific subset of parameters vary. The last
hypothesis H2n−1 expresses the case when all parameters
vary. Here, the whole data updated pdf is substituted by
a suitable (preferably flat) alternative.

Notice that in the hypotheses definition the random ele-
ment is the whole pdf Tf . All other variables like param-
eters and data occur in the condition and are treated as
known, hence the expectation is taken over all possible
forms of Tf .
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Each hypothesis Hi is assigned its weight λi, characterized
as a probability of becoming true during the time run.
Hence λi ∈ [0, 1], i = 0, . . . , 2n − 1 and

∑2n−1
i=1 λi = 1.

3.2 Approximative pdf

The convex combination of the probability density func-
tions according to individual hypotheses produces the ex-
pression of the true parameter probability density func-
tion.

E
[
Tf(θ|d(t))|C

]
= E

[
E
[
Tf(θ|d(t))|C, Hi

]
|C
]

=

=
2n−1∑
i=0

λiE
[
Tf(θ|d(t))|C, Hi

]
(7)

where the condition C comprises all what is supposed to
be known.

We search for an approximative pdf f̃(θ|d(t)) of the mix-
ture (7) that belongs to the same family of distributions as
the true pdf Tf . Under general conditions, as a ‘measure’
of dissimilarity between two distributions, it is convenient
to use the Kullback-Leibler divergence [Bernardo, 1979].
Hence the approximative pdf could be selected as that
which minimizes the expected divergence between the mix-
ture and itself

arg min
f∗(θ|d(t))

E
[
D
(
Tf
∣∣∣∣∣∣f̃) |C] =

= arg min
f∗(θ|d(t))

E

[∫
θ∗

Tf(θ|d(t)) ln
Tf(θ|d(t))
f̃(θ|d(t))

dθ|C
]

=

= arg min
f∗(θ|d(t))

∫
θ∗

E
[
Tf(θ|d(t))|C

]
ln

1
f̃(θ|d(t))

dθ =

= arg min
f∗(θ|d(t))

∫
θ∗

2n−1∑
i=0

λiE
[
Tf(θ|d(t))|C, Hi

]
ln

1
f̃(θ|d(t))

dθ

(8)

where the condition C again comprises all what is supposed
to be known.

Using the relation (8), we can find the best approxima-
tion of the true parameter probability density function
f̃(θ|d(t)). This pdf ideally approximates the probabilistic
description of the real behaviour of model parameters, i.e
whether any of their subset possibly varies in time or not.

4. DERIVATION FOR NORMAL REGRESSION
MODEL

If we assume normality of the regression model (1), we can
consider the parameters to have Gauss-inverse-Wishart
distribution, Tf ∼ GiWΘ(V, ν) defined as follows [Kárný
et al., 2005]:
Proposition 1. (Gauss-inverse-Wishart pdf). The probabil-
ity density function of the Gauss-inverse-Wishart distribu-
tion has the form

GiWΘ(V, ν) ≡ r−0.5(ν+n+2)

I(V, ν)
exp

{
−1
2r

[
−1
θ′

]′
V

[
−1
θ

]}
(9)

or

GiWΘ(L,D, ν) ≡ r−0.5(ν+n+2)

I(L,D, ν)
·

· exp
{
−1
2r

[
(θ − θ̂)′C−1(θ − θ̂) +DLSR

]}
(10)

where the individual terms have the following meaning:

ν stands for degrees of freedom,
n denotes length of the regression vector [−1, θ′]′,
r is the variance of model noise,
Vt is the extended information matrix, i.e. symmetric

square n × n dimensional non-zero positive definite
matrix, which carries the information about the past
data. By its L′DL decomposition, the terms L and D
are obtained.

θ is a vector of regression parameters
θ̂ is a least-squares (LS) estimate of θ
I stands for normalization integral
C is the covariance of LS estimate
DLSR is the LS reminder
Θ ≡ (θ′, r)′ collects the unknown model parameters

The expression of individual terms (the normalization
integral in particular) can be found in Kárný et al. [2005].
The important terms are given later in this paper.

A key property of the extended information matrix V is
its L′DL factorability to unique unit triangular matrix L
and the unique unit diagonal matrix D

V =
[ bdV bdψV ′

bdψV bψV

]
=

= L′DL =
[

1 0
bdψL bψL

]′ [ bdD 0
0 bψD

] [
1 0
bdψL bψL

]
(11)

Apparently, the left upper-corner V and D matrix ele-
ments are scalars, bdD, bdV ∈ R. Recalling Proposition 1,
the least-square estimate of parameters θ̂ ≡ bψL−1 bdψL has
the covariance C ≡ bψL−1 bψD−1( bψL−1)′ and the least-
square reminder DLSR ≡ bdD.

Suppose, that the GiW pdf given above represents a
density obtained by the data-update step (3) and the next
logical step to be determined is the time update in the
form of forgetting. First, we have to construct appropriate
hypotheses about the individual regression parameters’
behaviour (6). Note, that the variance r is varied together
with regression parameters from θ∗, when the GiW pdf is
decomposed [Kárný et al., 2005] and the hypothetical pdfs
constructed.
Proposition 2. (Low-dimensional pdfs of GiW pdf). Gi-
ven a distribution GiW[ aθ′, bθ′]′,r(V, ν). Let L′DL be the
decomposition of the extended information matrix V of
its probability density function as follows:

L ≡

 1
bdaL baL
bdbL babL bbL

 , D ≡
 bdD baD

bbD

 (12)

Then, the GiW probability density function can be decom-
posed to the low-dimensional marginal pdf

f( baθ, r) ∼ GiW baθ,r

([
1
bdaL baL

]
,

[ bdD
baD

]
, ν

)
(13)
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and the low-dimensional conditional pdf
f( bbθ| baθ, r) ∼

∼ N bbθ

(
bbL−1

(
bdbL− babL baθ

)
, r
(
bbL′ bbD bbL

)−1
)
(14)

The proof can be found in Kárný et al. [2005]

This proposition allows us to select and change the
marginal pdf for parameter baθ by replacing the proper
rows in the L′DL-factorized information matrix with suit-
able alternative. To change the marginal pdf inherent to
parameter bbθ, it is necessary to permute the proper rows,
in the particular case. The permutation algorithm is given
in Kárný et al. [2005] as well.

As given in Section 3.2, the convex combination of the
hypothetic pdfs with weights λi leads to a mixture of
densities approximating the true parameter probability
density function. To approximate this mixture with a
single GiW density we search for the minimally divergent
(in the Kullback-Leibler divergence sense) pdf as given in
(8). The Kullback-Leibler divergence introduced by (5) of
two GiW distributions is given by the following proposition
[Kárný et al., 2005]:
Proposition 3. (KL divergence of two GiW pdfs). Given
two distributions with probability density functions f and
f̃ . The Kullback-Leibler divergence of these two functions
has the following form

D
(
f
∣∣∣∣∣∣f̃) = ln

Γ(0.5ν̃)
Γ(0.5ν)

− 0.5 ln |CC̃−1|+ 0.5ν̃ ln
DLSR

D̃LSR

+ 0.5(ν − ν̃)ψ0(0.5ν)− 0.5n− 0.5ν + 0.5Tr
(
CC̃−1

)
+ 0.5

ν

DLSR

[(
θ̂ − ˆ̃

θ
)′
C̃−1

(
θ̂ − ˆ̃

θ
)

+ D̃LSR

]
(15)

where ψ0(·) denotes the digamma function, i.e. the first
logarithmic derivative of the gamma function Γ(·).

The proof is not trivial and is given in [Kárný et al., 2005].

To find the best approximation of mixture (7) made
from GiW densities, we need to find the minimum of the
Kullback-Leibler divergence in Proposition 3 by taking
derivatives with respect to ˜̂

θ, C̃, D̃LSR and ν̃. The results
give the following proposition.
Proposition 4. Given a convex combination (mixture) of n
Gauss-inverse-Wishart pdfs. Its best approximation in the
sense of the minimizer of the Kullback-Leibler divergence,
holding the GiW distribution, is given by the following
statistics

• θ̃ – the regression coefficients

ˆ̃
θ =

(
n∑
i=1

λi
νi

DLSR,i

)−1

·

(
n∑
i=1

λi
νi

DLSR,i
θ̂i

)
(16)

• D̃LSR – the least-squares reminder

D̃LSR = ν̃ ·

(
n∑
i=1

λi
νi

DLSR,i

)−1

(17)

• C̃ – the least-square covariance matrix

C̃ =
n∑
i=1

λiCi + ‘

+
n∑
i=1

λi
νi

DLSR;i

[(
θ̂i − ˆ̃

θ
)(

θ̂i − ˆ̃
θ
)′]

(18)

• and the counter (degrees of freedom)

ν̃ =
1 +

√
1 + 4

3 (A− ln 2)

2(A− ln 2)
(19)

where

A = ln

(
n∑
i=1

λi
νi

DLSR,i

)
+

n∑
i=1

λi lnDLSR,i−

−
n∑
i=1

λi ψ0(0.5νi) (20)

The Proposition can be proved by minimizing the differ-
entiated Kullback-Leibler divergence of two Gauss-inverse-
Wishart pdfs (15).
Remark 2. The given expression of counter employs an
approximation of the digamma function ψ0(ν̃). The ap-
proximation was done on base of the Bernoulli numbers,
however multiple methods can be used (see e.g. Bernardo
[1976] or Spouge [1994] or Cody et al. [1973]).

A Gauss-inverse-Wishart probability density function (10)
constructed with the found terms (16), (17), (18) and (19)
can be used as the best approximation of the parameters’
reality and hence used e.g. for prediction purposes.

5. EXPERIMENT

This experiment demonstrates the effect of the partial
forgetting-based estimation on a prediction with an au-
toregressive model. The results are compared to the predic-
tion with exponential forgetting method, which is the most
popular approach to estimation of time-variant parameters
in linear stochastic systems.

The exponential forgetting is formally motivated by time-
weighted least squares [Jazwinski, 1970] or flattening the
posterior pdf [Peterka, 1981]. The time update has the
following form

[f(θ|d(t))]λ, λ ∈ (0, 1] (21)
where pdf f(θ|d(t)) is the data-updated pdf from (3) and
λ is the forgetting factor, usually not lower than 0.95.

5.1 Transportation data

For the practical testing purposes, the real traffic data
were used. The data sample consists of traffic intensities
measured in Prague, Czech Republic, with the sampling
period equal to five minutes. For our purposes, the data
window of 300 samples was used (see Fig. 1). The initial 10
samples were used as a source of alternative information.

The traffic system was modelled with a first-order autore-
gression model AR(1) in the form

yt = θ1 + θ2yt−1 + et, t = 1, 2, . . . (22)
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where θ = (θ1, θ2)′ are regression parameters and et
denotes the normally distributed white noise with zero
mean and constant variance. yt denotes the modelled
traffic intensity.

According to the model, the appropriate four hypotheses
about the true pdf equivalent to those given in (6) were
constructed as follows

H0 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H0] =
= f(θ1, θ2, r|d(t))

H1 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H1] =
= f(θ2|θ1, r, d(t))fA(θ1, r)

H2 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H2] =
= f(θ1|θ2, r, d(t))fA(θ2, r)

H3 : E [fT (θ1, θ2, r|d(t))|θ1, θ2, r, d(t), H3] =
= fA(θ1, θ2, r) (23)

The optimization problem consisted in the search for op-
timal weights λ = [λ0, λ1, λ2, λ3] of hypotheses H0, H1, H2

H3. The quality of estimation was evaluated by the pre-
diction ability. As a criterion of the prediction quality,
the relative prediction error RPE defined as follows was
considered

RPE =
1
s

√∑T
i=1(yp;i − yi)2

T
(24)

where yi denotes the real system output, yp;i is the
predicted output and s is the sample standard deviation
of data on horizon T .

Characteristics Partial forg. Exp. forg.

Hyp./Forg. weight(s) λ = [0.9, 0.1, 0, 0] λ = 0.985
Rel. pred. error 0.0422 0.0989
Pred. error – minimum –1.0930 –2.3060
Pred. error – maximum 3.1240 3.8140
Pred. error – average 0.0934 0.7709
Pred. error – st. deviation 0.6215 1.2530

Table 1. Elementary characteristics of AR(1)
model with partial and exponential forgetting.

Fig. 1. Real course of traffic intensities.

Some interesting results and statistics are shown in the
Table 1. It compares the AR(1) models with parameter es-

Fig. 2. AR(1) with partial forgetting: Evolution of mo–
del parameters estimates

Fig. 3. AR(1) with exponential forgetting: Evolution of
model parameters estimates

timation with partial and exponential forgetting methods,
respectively. The first row shows the weights of particular
hypotheses λ = [λ0, . . . , λ3] for partial forgetting and
the forgetting factor λ of exponential forgetting. Other
table rows show the relative prediction error and a few
interesting statistics of the prediction errors. Apparently,
the partial forgetting based estimation leads to smaller
relative prediction error. The (absolute) prediction errors
(differences between real and predicted values for specific
time instants) are smaller and show that the prediction of
yt is less biased.

Figures 2 and 3 show the evolution course of model
parameter estimates θ̂1 and θ̂2 during the estimation
for both forgetting methods. Apparently the changes are
caught by the absolute term in both cases, as one would
intuitively expect.

Figures 4 and 5 respectively show the course of prediction
errors for both forgetting methods. The prediction with
partial forgetting leads to smaller and more symmetrical
(around zero) errors than the exponential forgetting.
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Fig. 4. AR(1) with partial forgetting: Prediction errors

Fig. 5. AR(1) with exponen. forgetting: Prediction errors

6. CONCLUSIONS

The paper describes a new method suitable for tracking
of slowly time-varying parameters of a linear stochastic
model with parameters that vary in time with different
rates. It is based on an unknown true probability density
function, describing the real behaviour of parameters. To
find its approximation, we define hypotheses about this
pdf, introducing its point estimates. Their convex combi-
nation is approximated to find the minimally divergent (in
the Kullback-Leibler divergence sense) pdf, well describing
the parameters and therefore convenient e.g. for prediction
purposes.

The challenge is to find a method for selecting significant
hypotheses from the set of all possible hypotheses, as well
as the choice of their weights. Any theoretical concept
would be welcome.
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